Tutorial - Elettronica

 

Dissipare il calore


Il dissipatore.

Per ottenere più potenza dal dispositivo si dovrà applicare un sistema per asportare il calore in eccesso. 

La sostanza del problema è quella esposta negli esempi precedenti: 

  1. il semiconduttore, funzionando, sviluppa calore
     
  2. se il calore resta confinato nel package, perchè non c'è sufficiente passaggio con l' ambiente, l' energia termica accumulata fa elevare la temperatura oltre il limite sopportabile dal materiale

Per far si che il semiconduttore possa trattare una potenza maggiore si deve "semplicemente"  far si che il calore sia sottratto adeguatamente al package e passato all' ambiente in modo da impedire un aumento pericoloso della temperatura.

Il dissipatore, o radiatore (in inglese heatsink, assorbitore di calore) è una sagoma di metallo, usualmente alluminio estruso o rame (buoni conduttori di calore), che offre una elevata superficie di scambio termico con l' ambiente, grazie ad una costruzione con numerose alettature (il che dà grande superficie in un volume limitato). 

Il semiconduttore è collegato meccanicamente alla superficie metallica: per conduzione, il calore passa dal package al dissipatore e da questo all' aria ambiente che lambisce le alettature. La superficie del dissipatore, cioè l' area di scambio con l' aria ambiente, è molto maggiore di quella del semiconduttore e quindi abbassa in modo sensibile la resistenza termica tra la giunzione e l'ambiente.

Le forme sono le più diverse, e così pure le dimensioni e le caratteristiche della resistenza termica.

Ci sono dissipatori specifici per i package comuni, come TO-3, TO-220, Multiwatt, ma anche per diodi, SCR, CPU o per uso generale, sia previsti per raffreddamento in aria libera, sia per aria forzata.

Costruttori con un ampio catalogo, interessante da consultare per avere una idea della varietà di oggetti proposta sono AAVID Thermalloy e Fischer

Il modello elettrico diventa questo:

  • la potenza Pè dissipata in calore nella giunzione
  • La "corrente termica" generata dalla giunzione attraversa il package e la sua resistenza Rθjc
  • Poi attraversa la resistenza termica della connessione meccanica tra package e radiatore Rθch
  • e quindi quella del radiatore stesso verso l' ambiente Rθha

La temperatura massima sarà quella della alla giunzione e diminuirà fino ad arrivare a quella ambiente nei flussi convettivi di aria attorno al dissipatore.

La temperatura massima sarà quella della alla giunzione e diminuirà fino ad arrivare a quella ambiente nei flussi convettivi di aria attorno al dissipatore.

Quindi, la resistenza complessiva che il calore deve superare tra giunzione e ambiente è pari alla somma delle resistenze in serie:

 Rθja = Rθjc + Rθch + Rθha

Supponiamo di aver fissato il nostro MOSFET ad un radiatore che dichiara una resistenza termica Rθha = 1 °C/W.
Per una temperatura ambiente di 35°C si avrà:

Pd = (Tj -Ta) / (Rθjc +  Rθch + Rθha) = (175 - 35)  / (0.4 + 0.5 + 1) = 73, 68 W

Questa è la potenza massima dissipabile nelle condizioni indicate. Utilizzando un dissipatore con una resistenza termica inferiore, ad esempio 0.5°C/W, si arriverà a:

Pd = (175-35)  / (0.4 + 0.5 + 0.5) = 100 W

Vediamo come il dissipatore consenta di aumentare la potenza dissipabile.
La motivazione dovrebbe essere ben chiara: l' applicazione di una superficie temo conduttrice al punto che genera calore ne abbassa la resistenza termica verso l' ambiente e quindi consente al calore di passare ad esso in modo più efficace.

E se volessimo dissipare 200W ?

Pd = (Tj -Ta)  / Rθja

da cui:

Rθja= (Tj -Ta)  / Pd  = 140 / 200 = 0,7 °C/W

Quindi occorrerebbe una resistenza massima tra giunzione e ambiente di 0.7°C/W.
Abbiamo detto che 

Rθja = Rθjc + Rθch + Rθha

Ma già la somma di Rθjc + Rθch = 0,9°C/W
Quindi, con una temperatura ambiente di 35 °C non sarà possibile in alcun modo dissipare 200W senza portare la temperatura della giunzione oltre il limite massimo ammesso: per quanto sia ampio il dissipatore (ovvero per quanta sia bassa la sua resistenza termica) non sarà possibile arrivare ai 200W.

E se utilizzassimo un sistema ad aria forzata, che può arrivare senza problemi ad una Rθha di 0.2°C/W

Pd = (Tj -Ta)  / Rθja = (Tj -Ta)  / ( Rθjc + Rθch + Rθha = 140 /(0.4 + 0.5 + 0.2) = 127 W

Una maggiore potenza sarà possibile solamente utilizzando un sistema di pompa di calore in grado di applicare una resistenza termica negativa, ovvero di sottrarre calore forzatamente (criogenico, cella di Peltier, ecc).

Vediamo altri esempi 


 

Copyright © afg. Tutti i diritti riservati.
Aggiornato il 01/10/12.